A basic tutorial to version control using git


I’ve been hacking away at this post for a while now, for a few reasons. First, I’m a git novice, so I’m still trying to learn my way around the software. Second, this is an intimidating topic for those who are not used to things like the command line, so it was a challenge to identify which ideas were critical to cover, and which could be ignored without too much of a loss in functionality. Finally, there are always lots of little kinks to work out, especially in a software that is cross-platform. Therefore, please take the following with a grain of salt and let me know if anything is unclear, needs work, or is flat out wrong!

Continue reading

Taking the biodiversity challenge

mesocosm_exptI wanted to share a post by my friend Sharon Baruch-Mordo at my other blog, BioDV, on communicating biodiversity science. Sharon is a thoughtful, insightful scientist and I think she makes some really awesome points.

In her article, she challenges readers to, “write a 500 word essay about your science for a popular media outlet.” Never one to back down from a challenge, I thought I would give it a shot. My effort is below (499 words!)…what do you think Sharon?

Continue reading

Collaboration: a problem shared


I wanted to quickly highlight an article by Cameron Walker titled “Collaboration: A problem shared” that appeared in Nature Jobs this week. It highlights some of my research done as part of the Dimensions of Biodiversity Distributed Graduate Seminar. I’ve wrote about collaboration before, specifically this program, so I was happy to see it get the press it deserves! Moving forward, I think educational models such as this one will be critical in preparing young ecologists to answer relevant questions in ecology–so check it out!

Using parallel processing in R

Lately I’ve been running a lot of complex models with huge datasets, which is grinding my computer to a halt for hours. Streamlining code can only go so far, but R is limited because the default session runs on only 1 core. In a time when computers have at least 2 cores, if not more, why not take advantage of that extra computing power? (Heck, even my phone has 2 cores.*)

Luckily, R comes bundled with the “parallel” package, which helps to distribute the workload across multiple cores. It’s a cinch to set up on a local machine:

Continue reading

R^2 for linear mixed effects models

Linear mixed effects models are a powerful technique for the analysis of ecological data, especially in the presence of nested or hierarchical variables. But unlike their purely fixed-effects cousins, they lack an obvious criterion to assess model fit.

[Updated October 13, 2015: Development of the R function has moved to my piecewiseSEM package, which can be found here under the function sem.model.fits]

Continue reading